
The Paxos Family of Consensus Protocols
Bryan Turner (bryan.turner@pobox.com)

Oct, 2007
Submitted to Wikipedia.org as an expansion to the article “Paxos_algorithm”.

Introduction

Paxos is a family of protocols for solving consensus in a network of
unreliable processors. Consensus protocols are the basis for the State
Machine Approach to distributed computing, as suggested by Leslie Lamport
in [3] and surveyed by Fred Schneider in [14].

Consensus is the process of agreeing on one result among a group of
participants. This problem becomes difficult when the participants or their
communication medium may experience failures [1].

The State Machine Approach is a technique for converting an algorithm
into a fault-tolerant, distributed implementation. Ad-hoc techniques may
leave important cases of failures unresolved. The principled approach
proposed by Lamport et. al. ensures all cases are handled safely.

The Paxos family of protocols includes a spectrum of tradeoffs between
the number of processors, number of message delays before learning the
agreed value, the activity level of individual participants, number of messages
sent, and types of failures. The convergent property of the Paxos family is
their safety from inconsistency [4][7][8][10][9].

Safety Properties

In order to guarantee safety, Paxos defines three safety properties and
ensures they are always held, regardless of the pattern of failures:

Nontriviality:
Only proposed values can be learned. [8]

Consistency:
At most one value can be learned (Two different learners cannot
learn different values). [8][9]

Liveness(C;L):
If value C has been proposed, then eventually learner L will learn
some value (if sufficient processors remain non-faulty). [9]

Preliminaries

In order to simplify the presentation of Paxos, the following
assumptions and definitions are made explicit. Techniques to broaden the
applicability are known in the literature, and are not covered in this article,
see references for further reading.

Processors

• Processors operate at arbitrary speed.
• Processors experience independent, random failures.
• Processors with stable storage may re-join the protocol after

failures.
• Processors do not collude, lie, or otherwise attempt to divert the

protocol.
 (See Byzantine Paxos for a solution which tolerates arbitrary
failures)

Network

• Processors can send messages to any other processor.
• Messages are sent asynchronously and may take arbitrarily long to

deliver.
• Messages may be lost, reordered, or duplicated.
• Messages are delivered without corruption.
 (See Byzantine Paxos for a solution which tolerates arbitrary
failures)

Number of Processors

In general, a consensus algorithm can make progress using
2F+1 processors despite the simultaneous failure of any F processors
[2]. However, using reconfiguration, a protocol may be employed
which survives more total failures if they do not occur too rapidly:

“For example, it takes seven servers to tolerate three [simultaneous] failures. In
many systems, the best way to achieve the desired degree of fault tolerance is
to reconfigure the system to replace failed servers by spares. With
reconfiguration, a system that uses three active servers and two spares can
tolerate a total of three failures, if a failed server can be replaced by a spare
before another failure occurs. Reconfiguration therefore allows fewer processors
to tolerate the same total number of failures, though not the same number of
simultaneous failures. (In most systems, simultaneous failures are much less
likely than successive ones.)” [7]

Roles

Paxos describes the actions of the processes by their roles in the
protocol; Client, Acceptor, Proposer, Learner, and Leader. In typical
implementations, a single processor may play one or more roles at the
same time. This does not affect the correctness of the protocol – it is
usual to coalesce roles to improve the latency and/or number of
messages in the protocol.

Client
The Client issues a request to the distributed system, and waits

for a response. For instance a “write” request on a file in a distributed
file server.

Acceptor
The Acceptors act as the fault-tolerant “memory” of the protocol.

Acceptors are collected into groups called Quorums. Any message sent
to an Acceptor must be sent to a Quorum of Acceptors, any message
received from an Acceptor is ignored unless a copy is received from
each Acceptor in a Quorum.

Proposer
A Proposer advocates a client request, attempting to convince

the Acceptors to agree on it, and acting as a coordinator to move the
protocol forward when conflicts occur.

Learner
Learners act as the replication factor for the protocol. Once a

Client request has been agreed on by the Acceptors, the Learner may
take action (ie: execute the request and send a response to the client).
To improve availability of processing, additional Learners can be added.

Leader

Paxos requires a distinguished Proposer (called the leader) to
make progress. Many processes may believe they are leaders, but the
protocol only guarantees progress if one of them is eventually chosen.
If two processes believe they are leaders, it is possible to stall the

protocol by continuously proposing conflicting updates. The safety
properties are preserved regardless.

Quorums

Quorums express the safety properties of Paxos by ensuring at
least some surviving processor retains knowledge of the results.

Typically, a Quorum is any majority of participating Acceptors.
ie: given the set of Acceptors {A,B,C,D}, a majority Quorum would be
any three Acceptors: {A,B,C}, {A,C,D}, {A,B,D}, {B,C,D}, etc..

Choice

In Paxos, the leader sometimes has to choose among a set of
conflicting values. If a set of values is in conflict, the leader must
choose one of the values from the most recent round. The protocol
does not specify which value must be chosen, and correctness is
guaranteed regardless of the choice. However, it is possible for the
choice to impede progress.

A typical Choice function is to select the majority value from the
highest round.

Typical Deployment

In most deployments of Paxos, each participating process acts in three
roles; Proposer, Acceptor and Learner [11]. This reduces the message
complexity significantly, without sacrificing correctness:

“In Paxos, clients send commands to a leader. During normal operation,
the leader receives a client's command, assigns it a new command
number i, and then begins the ith instance of the consensus algorithm
by sending messages to a set of acceptor processes.” [9]

By merging roles the protocol “collapses” into an efficient client-
master-replica style deployment typical of the database community. The

benefit of the Paxos family (including implementations with merged roles) is
the guarantee of its [safety properties].

A typical implementation’s message flow is covered in Typical Multi-
Paxos Deployment.

Basic Paxos

This protocol is the most basic of the Paxos family; it is not the protocol
which is typically implemented in a deployment (see Multi-Paxos).

Each instance of the Basic Paxos protocol decides on a single output
value. The protocol proceeds over several rounds, a successful round has two
phases:

Phase 1a: Prepare
A Proposer (the leader) selects a proposal number N and sends

a Prepare message to a Quorum of Acceptors.

Phase 1b: Promise
If the proposal number N is larger than any previous proposal,

then each Acceptor promises not to accept proposals less than N, and
sends the value it last accepted for this instance to the Proposer (the
leader).

Otherwise a denial is sent.

Phase 2a: Accept!
If the Proposer receives responses from a Quorum of Acceptors,

it may now Choose a value to be agreed upon. If any of the Acceptors
have already accepted a value, the leader must Choose a value from
this set. Otherwise, the Proposer is free to propose any value.

The Proposer sends an Accept! message to a Quorum of
Acceptors with the Chosen value.

Phase 2b: Accepted

If the Acceptor receives an Accept! message for a proposal it has
promised, then it Accepts the value.

Each Acceptor sends an Accepted message to the Proposer and
every Learner.

Rounds fail when multiple Proposers send conflicting Prepare
messages, or when the Proposer does not receive a Quorum of responses
(Promise or Accepted). In these cases, another round must be started with a
higher proposal number.

Here is a graphic representation of the Basic Paxos protocol. Note that
the values returned in the Promise message (Va, Vb, Vc) are typically null for
the first round of each instance, they are shown below for completeness.

[Message Flow : Basic Paxos (one instance, one successful round)]
 Client Proposer Acceptor Learner
 | | | | | | |
 X-------->| | | | | | Request
 | X--------->|->|->| | | Prepare(N)
 | |<---------X--X--X | | Promise(N,{Va,Vb,Vc})
 | X--------->|->|->| | | Accept!(N,Vn)
 | |<---------X--X--X------>|->| Accepted(N,Vn)
 |<---------------------------------X--X Response
 | | | | | | |

Error Cases in Basic Paxos

The simplest error cases are the failure of a redundant Learner,
or failure of an Acceptor when a Quorum of Acceptors remains live. In
these cases, the protocol requires no recovery. No additional rounds or
messages are required, as shown below:

[Message Flow : Basic Paxos, failure of Acceptor (Quorum size = 2
Acceptors)]
 Client Proposer Acceptor Learner
 | | | | | | |
 X-------->| | | | | | Request
 | X--------->|->|->| | | Prepare(N)
 | | | | ! | | !! FAIL !!
 | |<---------X--X | | Promise(N,{Va,Vb,Vc})
 | X--------->|->| | | Accept!(N,Vn)
 | |<---------X--X--------->|->| Accepted(N,Vn)
 |<---------------------------------X--X Response
 | | | | | |

[Message Flow : Basic Paxos, failure of redundant Learner]
 Client Proposer Acceptor Learner
 | | | | | | |
 X-------->| | | | | | Request
 | X--------->|->|->| | | Prepare(N)
 | |<---------X--X--X | | Promise(N,{Va,Vb,Vc})
 | X--------->|->|->| | | Accept!(N,Vn)
 | |<---------X--X--X------>|->| Accepted(N,Vn)
 | | | | | | ! !! FAIL !!
 |<---------------------------------X Response
 | | | | | |

The next failure case is when a Proposer fails after proposing a
value, but before agreement is reached. Ignoring Leader election, an
example message flow is as follows:

[Message Flow : Basic Paxos, Failure of Proposer (re-election not shown, one
instance, two rounds)]
Client Leader Acceptor Learner
 | | | | | | |
 X----->| | | | | | Request
 | X------------>|->|->| | | Prepare(N)
 | |<------------X--X--X | | Promise(N,{Va,Vb,Vc})
 | | | | | | |
 | | | | | | | !! Leader fails during broadcast !!
 | X------------>| | | | | Accept!(N,Vn)
 | ! | | | | |
 | | | | | | | !! NEW LEADER !!
 | X--------->|->|->| | | Prepare(N+1)
 | |<---------X--X--X | | Promise(N+1,{Vn})
 | X--------->|->|->| | | Accept!(N+1,Vn)
 | |<---------X--X--X------>|->| Accepted(N+1,Vn)
 |<---------------------------------X--X Response
 | | | | | | |

The most complex case is when multiple Proposers believe
themselves to be Leaders. For instance the current leader may fail and
later recover, but the other Proposers have already re-elected a new
leader. The recovered leader has not learned this yet and attempts to
begin a round in conflict with the current leader.

[Message Flow : Basic Paxos, Dueling Proposers (one instance, four
unsuccessful rounds)]
Client Proposer Acceptor Learner
 | | | | | | |
 X----->| | | | | | Request
 | X------------>|->|->| | | Prepare(N)
 | |<------------X--X--X | | Promise(N,{Va,Vb,Vc})
 | ! | | | | | !! LEADER FAILS

 | | | | | | | !! NEW LEADER (knows N)
 | X--------->|->|->| | | Prepare(N+1)
 | |<---------X--X--X | | Promise(N+1,{Va,Vb,Vc})
 | | | | | | | | !! OLD LEADER recovers
 | | | | | | | | !! OLD LEADER tries N+1, denied
 | X------------>|->|->| | | Prepare(N+1)
 | |<------------X--X--X | | Nak(N+1)
 | | | | | | | | !! OLD LEADER tries N+2
 | X------------>|->|->| | | Prepare(N+2)
 | |<------------X--X--X | | Promise(N+2,{Va,Vb,Vc})
 | | | | | | | | !! NEW LEADER proposes, denied
 | | X--------->|->|->| | | Accept!(N+1,Vn)
 | | |<---------X--X--X | | Nak(N+2)
 | | | | | | | | !! NEW LEADER tries N+3
 | | X--------->|->|->| | | Prepare(N+3)
 | | |<---------X--X--X | | Promise(N+3,{Va,Vb,Vc})
 | | | | | | | | !! OLD LEADER proposes, denied
 | X------------>|->|->| | | Accept!(N+2,Vn)
 | |<------------X--X--X | | Nak(N+3)
 | | | | | | | | ... and so on ...

Multi-Paxos

A typical deployment of Paxos requires a continuous stream of agreed
values acting as commands to a distributed state machine. If each command
is the result of a single instance of the Basic Paxos protocol, a significant
amount of overhead would result.

If the leader is relatively stable, phase 1 becomes unnecessary. Thus, it
is possible to skip phase 1 for future instances of the protocol with the same
leader.

To achieve this, the instance number is included along with each value.
Multi-Paxos reduces the failure-free message delay (proposal to learning)
from 4 delays to 2 delays.

The message flow looks like this:

[Message Flow : Multi-Paxos, first instance with new leader]
 Client Proposer Acceptor Learner
 | | | | | | | --- First Request ---
 X-------->| | | | | | Request
 | X--------->|->|->| | | Prepare(N)
 | |<---------X--X--X | | Promise(N,I,{Va,Vb,Vc})
 | X--------->|->|->| | | Accept!(N,I,Vn)
 | |<---------X--X--X------>|->| Accepted(N,I,Vn)
 |<---------------------------------X--X Response
 | | | | | | |

[Message Flow : Multi-Paxos, subsequent instances with same leader]

Client Proposer Acceptor Learner
 | | | | | | | --- Following Requests ---
 X-------->| | | | | | Request
 | X--------->|->|->| | | Accept!(N,I+1,W)
 | |<---------X--X--X------>|->| Accepted(N,I,W)
 |<---------------------------------X--X Response
 | | | | | | |

Typical Multi-Paxos Deployment

The most common deployment of the Paxos family is Multi-Paxos [11],
specialized for participating processors to each be Proposers, Acceptors and
Learners. The message flow may be optimized as depicted here:

[Message Flow : Three Server Multi-Paxos, First Instance with New Leader]
 Client Servers
 | | | | --- First Request ---
 X-------->| | | Request
 | X->|->| Prepare(N)
 | |<-X--X Promise(N,I,{Va,Vb,Vc})
 | X->|->| Accept!(N,I,Vn)
 | |<-X--X Accepted(N,I)
 |<--------X | | Response
 | | | |

[Message Flow : Three Server Multi-Paxos, Subsequent Instances with Same
Leader]
 Client Servers
 X-------->| | | Request
 | X->|->| Accept!(N,I+1,W)
 | |<-X--X Accepted(N)
 |<--------X | | Response
 | | | |

Optimizations

A number of optimizations reduce message complexity and size. These
optimizations are summarized below:

“We can save messages at the cost of an extra message delay by having
a single distinguished learner that informs the other learners when it
finds out that a value has been chosen. Acceptors then send Accepted
messages only to the distinguished learner. In most applications, the
roles of leader and distinguished learner are performed by the same
processor.

“A leader can send its Prepare and Accept! messages just to a quorum
of acceptors. As long as all acceptors in that quorum are working and
can communicate with the leader and the learners, there is no need for
acceptors not in the quorum to do anything.

“Acceptors do not care what value is chosen. They simply respond to
Prepare and Accept! messages to ensure that, despite failures, only a
single value can be chosen. However, if an acceptor does learn what
value has been chosen, it can store the value in stable storage and
erase any other information it has saved there. If the acceptor later
receives a Prepare or Accept! message, instead of performing its
Phase1b or Phase2b action, it can simply inform the leader of the
chosen value.

“Instead of sending the value v, the leader can send a hash of v to some
acceptors in its Accept! messages. A learner will learn that v is chosen
if it receives Accepted messages for either v or its hash from a quorum
of acceptors, and at least one of those messages contains v rather than
its hash. However, a leader could receive Promise messages that tell it
the hash of a value v that it must use in its Phase2a action without
telling it the actual value of v. If that happens, the leader cannot
execute its Phase2a action until it communicates with some process
that knows v.” [7]

“A proposer can send its proposal only to the leader rather than to all
coordinators. However, this requires that the result of the leader-
selection algorithm be broadcast to the proposers, which might be
expensive. So, it might be better to let the proposer send its proposal to
all coordinators. (In that case, only the coordinators themselves need to
know who the leader is.)

“Instead of each acceptor sending Accepted messages to each learner,
acceptors can send their Accepted messages to the leader and the
leader can inform the learners when a value has been chosen. However,
this adds an extra message delay.

“Finally, observe that phase 1 is unnecessary for round 1 .. The leader
of round 1 can begin the round by sending an Accept! message with
any proposed value.” [8]

Cheap Paxos

Cheap Paxos extends Basic Paxos to tolerate F failures with F+1 main
processors and F auxiliary processors by dynamically reconfiguring after each
failure.

This reduction in processor requirements comes at the expense of
liveness; if too many main processors fail in a short time, the system must halt
until the auxiliary processors can reconfigure the system. During stable
periods, the auxiliary processors take no part in the protocol.

“With only two processors p and q, one processor cannot distinguish
failure of the other processor from failure of the communication
medium. A third processor is needed. However, that third processor
does not have to participate in choosing the sequence of commands. It
must take action only in case p or q fails, after which it does nothing
while either p or q continues to operate the system by itself. The third
processor can therefore be a small/slow/cheap one, or a processor
primarily devoted to other tasks.” [7]

A graphic representation of Cheap Paxos is as follows:

[Message Flow : Cheap Multi-Paxos; 3 main Acceptors, 1 Auxiliary Acceptor,
Quorum size = 3, showing failure of one main processor and subsequent
reconfiguration]
 { Acceptors }
Proposer Main Aux Learner
| | | | | | -- Phase 2 --
X----------->|->|->| | | Accept!(N,I,V)
| | | ! | | --- FAIL! ---
|<-----------X--X--------------->| Accepted(N,I,V)
| | | | | -- Failure detected (only 2 accepted) --
X----------->|->|------->| | Accept!(N,I,V) (re-transmit, include Aux)
|<-----------X--X--------X------>| Accepted(N,I,V)
| | | | | -- Reconfigure : Quorum = 2 --
X----------->|->| | | Accept!(N,I+1,W) (Aux not participating)
|<-----------X--X--------------->| Accepted(N,I+1,W)
| | | | |

Fast Paxos

Fast Paxos generalizes Basic Paxos to reduce end-to-end message
delays. In Basic Paxos, the message delay from client request to learning is 3
message delays. Fast Paxos allows 2 message delays, but requires the Client
to send its request to multiple destinations.

Intuitively, if the leader has no value to propose, then a client could
send an Accept! message to the Acceptors directly. The Acceptors would
respond as in Basic Paxos, sending Accepted messages to the leader and
every Learner achieving two message delays from Client to Learner.

If the leader detects a collision, it resolves the collision by sending
Accept! messages for a new round which are Accepted as usual. This

coordinated recovery technique requires four message delays from Client to
Learner.

The final optimization occurs when the leader specifies a recovery
technique in advance, allowing the Acceptors to perform the collision
recovery themselves. Thus, uncoordinated collision recovery can occur in
three message delays (and only two message delays if all Learners are also
Acceptors).

Non-Conflicting Message Flow:

Client Leader Acceptor Learner
 | | | | | | | |
 | X--------->|->|->|->| | | Any(N,I,Recovery)
 | | | | | | | |
 X------------------->|->|->|->| | | Accept!(N,I,W)
 | |<---------X--X--X--X------>|->| Accepted(N,I,W)
 |<------------------------------------X--X Response(W)
 | | | | | | | |

Conflicting Message Flow (with uncoordinated recovery). Note: the protocol
does not specify how to handle the dropped client request.

Client Leader Acceptor Learner
 | | | | | | | | |
 | | X------->|->|->|->| | | Any(N,I,Recovery)
 | | | | | | | | |
 | | | | | | | | | !! Concurrent conflicting proposals
 | | | | | | | | | !! received in different order
 | | | | | | | | | !! by the Acceptors
 | X--------------?|-?|-?|-?| | | Accept!(N,I,V)
 X-----------------?|-?|-?|-?| | | Accept!(N,I,W)
 | | | | | | | | |
 | | | | | | | | | !! Acceptors disagree on value
 | | |<-------X--X->|->|----->|->| Accepted(N,I,V)
 | | |<-------|<-|<-X--X----->|->| Accepted(N,I,W)
 | | | | | | | | |
 | | | | | | | | | !! Detect collision & recover
 | | |<-------X--X--X--X----->|->| Accepted(N+1,I,W)
 |<---------------------------------X--X Response(W)
 | | | | | | | | |

Conflicting Message Flow (merged Acceptor/Learner roles):

Client Servers
 | | | | | |
 | | X->|->|->| Any(N,I,Recover)
 | | | | | |
 | | | | | | !! Concurrent conflicting proposals
 | | | | | | !! received in different order
 | | | | | | !! by the Servers
 | X--------?|-?|-?|-?| Accept!(N,I,V)
 X-----------?|-?|-?|-?| Accept!(N,I,W)
 | | | | | |
 | | | | | | !! Servers disagree on value

 | | X--X->|->| Accepted(N,I,V)
 | | |<-|<-X--X Accepted(N,I,W)
 | | | | | |
 | | | | | | !! Detect collision & recover
 |<-----------X--X--X--X Response(W)
 | | | | | |

Generalized Paxos

Generalized consensus explores the relationship between the
operations of a distributed state machine and the consensus protocol used to
maintain consistency of that state machine. The main discovery involves
optimizations of the consensus protocol when conflicting proposals could be
applied to the state machine in any order. ie: The operations proposed by the
conflicting proposals are commutative operations of the state machine.

In such cases, the conflicting operations can both be accepted, avoiding
the delays required for resolving conflicts and re-proposing the rejected
operation.

This concept is further generalized into ever-growing sets of
commutative operations, some of which are known to be stable (and thus may
be executed). The protocol tracks these sets of operations, ensuring that all
proposed commutative operations of one set are stabilized before allowing
any non-commuting operation to become stable.

Generalized Paxos Example:
In order to illustrate Generalized Paxos, this example shows a

message flow between two concurrently executing clients and a
distributed state machine performing the operations of a read/write
register with 2 independent register addresses (A and B).

Commutativity Table; marked cells denote interference:

 Read(A) Write(A) Read(B) Write(B)
Read(A) | | X | | |
Write(A)| X | X | | |
Read(B) | | | | X |
Write(B)| | | X | X |

Proposed Series of operations (global order):
1:Read(A)
2:Read(B)
3:Write(B)
4:Read(B)
5:Read(A)
6:Write(A)
7:Read(A)

Example commutative permutation:
{ 1:Read(A), 2:Read(B), 5:Read(A) }

{ 3:Write(B), 6:Write(A) }
{ 4:Read(B), 7:Read(A) }

Observations:
* 5:Read(A) may commute in front of 3:Write(B)/4:Read(B) pair.
* 4:Read(B) may commute behind the 3:Write(B)/6:Write(A) pair.
* In practice, a commute occurs only when operations are proposed

concurrently.

Generalized Paxos vs. Fast Multi-Paxos

The message flow shows Generalized Paxos performing
agreement on seven values in (nominally) 10 message delays. Fast
Multi-Paxos would require 15-17 delays for the same sequence (3
delays for each of the three concurrent proposals with uncoordinated
recovery, plus at least 2 delays for the eventual re-submission of the
three rejected proposals, concurrent re-proposals may add two
additional delays).

[Message Flow, responses not shown]
(Note: message abbreviations differ from previous message flows due to
specifics of the protocol, see [9] for a full discussion):

 { Acceptors }
Client Leader Acceptor Learner
 | | | | | | | | !! New Leader Begins Round
 | | X----->|->|->| | | Prepare(N)
 | | |<-----X--X--X | | Promise(N,null)

 | | X----->|->|->| | | Phase2Start(N,null)
 | | | | | | | |
 | | | | | | | | !! Concurrent commuting proposals
 | X--------?|-----?|-?|-?| | | Propose(ReadA)
 X-----------?|-----?|-?|-?| | | Propose(ReadB)
 | | X------X-------------->|->| Accepted(N,<ReadA,ReadB>)
 | | |<--------X--X-------->|->| Accepted(N,<ReadB,ReadA>)
 | | | | | | | |
 | | | | | | | | !! No Conflict, both accepted
 | | | | | | | | Stable = <ReadA, ReadB>
 | | | | | | | |
 | | | | | | | | !! Concurrent conflicting proposals
 X-----------?|-----?|-?|-?| | | Propose(<WriteB,ReadA>)
 | X--------?|-----?|-?|-?| | | Propose(ReadB)
 | | | | | | | |
 | | X------X-------------->|->| Accepted(N,<WriteB,ReadA> . <ReadB>)
 | | |<--------X--X-------->|->| Accepted(N,<ReadB> . <WriteB,ReadA>)
 | | | | | | | |
 | | | | | | | | !! Conflict detected, leader chooses
 | | | | | | | | commutative order:
 | | | | | | | | V = <ReadA, WriteB, ReadB>
 | | | | | | | |
 | | X----->|->|->| | | Phase2Start(N+1,V)
 | | |<-----X--X--X-------->|->| Accepted(N+1,V)
 | | | | | | | | Stable = <ReadA, ReadB> .
 | | | | | | | | <ReadA, WriteB, ReadB>
 | | | | | | | |
 | | | | | | | | !! More conflicting proposals
 X-----------?|-----?|-?|-?| | | Propose(WriteA)
 | X--------?|-----?|-?|-?| | | Propose(ReadA)
 | | | | | | | |
 | | X------X-------------->|->| Accepted(N+2,<WriteA> . <ReadA>)
 | | |<--------X--X-------->|->| Accepted(N+2,<ReadA> . <WriteA>)
 | | | | | | | |
 | | | | | | | | !! Leader chooses order W
 | | X----->|->|->| | | Phase2Start(N+2,W)
 | | |<-----X--X--X-------->|->| Accepted(N+2,W)
 | | | | | | | | Stable = <ReadA, ReadB> .
 | | | | | | | | <ReadA, WriteB, ReadB> .
 | | | | | | | | <WriteA, ReadA>
 | | | | | | | |

Byzantine Paxos

Paxos may also be extended to support arbitrary failures of the
participants, including lying, fabrication of messages, collusion with other
participants, selective non-participation, etc. These types of failures are
called Byzantine Failures, after the solution popularized by Lamport [13].

Byzantine Paxos [10][8] adds an extra message (Verify) which acts to
distribute knowledge and verify the actions of the other processors:

[Message Flow : Byzantine Multi-Paxos, steady-state operation]
Client Proposer Acceptor Learner
 | | | | | | |
 X-------->| | | | | | Request
 | X--------->|->|->| | | Accept!(N,I,V)
 | | X<>X<>X | | Verify(N,I,V) - BROADCAST
 | |<---------X--X--X------>|->| Accepted(N,V)
 |<---------------------------------X--X Response(V)
 | | | | | | |

Fast Byzantine Paxos removes this extra delay, since the client sends
commands directly to the Acceptors[8]. Note the Accepted message in Fast
Byzantine Paxos is sent to all Acceptors and all Learners, while Fast Paxos
sends Accepted messages only to Learners:

[Message Flow : Fast Byzantine Multi-Paxos, steady-state operation]
Client Acceptor Learner
 | | | | | |
 X----->|->|->| | | Accept!(N,I,V)
 | X<>X<>X------>|->| Accepted(N,I,V) - BROADCAST
 |<-------------------X--X Response(V)
 | | | | | |

The failure scenario is the same for both protocols; Each Learner waits
to receive F+1 identical messages from different Acceptors. If this does not
occur, the Acceptors themselves will also be aware of it (since they exchanged
each other’s messages in the broadcast round), and correct Acceptors will re-
broadcast the agreed value:

[Message Flow : Fast Byzantine Multi-Paxos, failure scenario]
Client Acceptor Learner
 | | | ! | | !! One Acceptor is faulty
 X----->|->|->! | | Accept!(N,I,V)
 | X<>X<>X------>|->| Accepted(N,I,{V,W}) - BROADCAST
 | | | ! | | !! Learners receive 2 different commands
 | | | ! | | !! Correct Acceptors notice error and choose
 | X<>X<>X------>|->| Accepted(N,I,V) - BROADCAST
 |<-------------------X--X Response(V)
 | | | ! | |

Bibliography

[1] Pease, Marshall, Shostak, Robert; Lamport, Leslie (1980) “Reaching
Agreement in the Presence of Faults” Journal of the Association for
Computing Machinery 27, 2

http://research.microsoft.com/users/lamport/pubs/pubs.html#reaching

[2] Lamport, Leslie (2004) “Lower Bounds for Asynchronous Consensus”
Microsoft Research Technical Report MSR-TR-2004-72

http://research.microsoft.com/users/lamport/pubs/pubs.html#lower-
bound

[3] Lamport, Leslie (1978) “Time, Clocks and the Ordering of Events in a
Distributed System”. Communications of the ACM 21 (7): 558–565

http://research.microsoft.com/users/lamport/pubs/pubs.html#time-
clocks

[4] Lamport, Leslie (1998) “The Part-Time Parliament” ACM Transactions on
Computer Systems 16 (2): 133–169

http://research.microsoft.com/users/lamport/pubs/pubs.html#lamport-
paxos

[5] Lamport, Leslie (2001) "Paxos Made Simple” ACM SIGACT News
(Distributed Computing Column) 32, 4

http://research.microsoft.com/users/lamport/pubs/pubs.html#paxos-
simple

[6] De Prisco, Roberto; Lampson Butler; Lynch, Nancy (1997) “Revisiting the
Paxos Algorithm” Theoretical Computer Science

http://citeseer.ist.psu.edu/deprisco97revisiting.html

[7] Lamport, Leslie; Massa, Mike (2004) "Cheap Paxos" Proceedings of the
International Conference on Dependable Systems and Networks (DSN 2004)

http://research.microsoft.com/users/lamport/pubs/pubs.html#web-dsn-
submission

[8] Lamport, Leslie (2005) "Fast Paxos" Microsoft Research Technical Report
MSR-TR-2005-112

http://research.microsoft.com/users/lamport/pubs/pubs.html#fast-paxos

[9] Lamport, Leslie (2005) "Generalized Consensus and Paxos" Microsoft
Research Technical Report MSR-TR-2005-33

http://research.microsoft.com/users/lamport/pubs/pubs.html#generaliz
ed

[10] Castro, Miguel (2001) "Practical Byzantine Fault Tolerance"

http://research.microsoft.com/users/lamport/pubs/pubs.html#generalized
http://research.microsoft.com/users/lamport/pubs/pubs.html#generalized
http://research.microsoft.com/users/lamport/pubs/pubs.html#fast-paxos
http://research.microsoft.com/users/lamport/pubs/pubs.html#web-dsn-submission
http://research.microsoft.com/users/lamport/pubs/pubs.html#web-dsn-submission
http://citeseer.ist.psu.edu/deprisco97revisiting.html
http://research.microsoft.com/users/lamport/pubs/pubs.html#paxos-simple
http://research.microsoft.com/users/lamport/pubs/pubs.html#paxos-simple
http://research.microsoft.com/users/lamport/pubs/pubs.html#lamport-paxos
http://research.microsoft.com/users/lamport/pubs/pubs.html#lamport-paxos
http://research.microsoft.com/users/lamport/pubs/pubs.html#time-clocks
http://research.microsoft.com/users/lamport/pubs/pubs.html#time-clocks
http://research.microsoft.com/users/lamport/pubs/pubs.html#lower-bound
http://research.microsoft.com/users/lamport/pubs/pubs.html#lower-bound
http://research.microsoft.com/users/lamport/pubs/pubs.html#reaching

http://citeseer.ist.psu.edu/castro01practical.html

[11] Chandra, Tushar; Griesemer, Robert; Redstone, Joshua (2007) “Paxos
Made Live – An Engineering Perspective” PODC '07: 26th ACM Symposium on
Principles of Distributed Computing

http://labs.google.com/papers/paxos_made_live.html

[12] Gray, Jim; Lamport, Leslie “Paxos Commit”
http://research.microsoft.com/users/lamport/pubs/pubs.html#paxos-

commit

[13] Lamport, Leslie; Shostak, Robert; Pease, Marshall “The Byzantine
Generals Problem” ACM Transactions on Programming Languages and
Systems 4, 3, 382-401

http://research.microsoft.com/users/lamport/pubs/pubs.html#byz

[14] Schneider, Fred (1990) “Implementing Fault-Tolerant Services Using the
State Machine Approach: A Tutorial” ACM Computing Surveys 22

http://www.eecs.harvard.edu/cs262/DSbook.c7.pdf

http://www.eecs.harvard.edu/cs262/DSbook.c7.pdf
http://research.microsoft.com/users/lamport/pubs/pubs.html#byz
http://research.microsoft.com/users/lamport/pubs/pubs.html#paxos-commit
http://research.microsoft.com/users/lamport/pubs/pubs.html#paxos-commit
http://labs.google.com/papers/paxos_made_live.html
http://citeseer.ist.psu.edu/castro01practical.html

